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Abstract High-resolution (downscaled) projections of

future climate conditions are critical inputs to a wide

variety of ecological and socioeconomic models and are

created using numerous different approaches. Here, we

conduct a sensitivity analysis of spatial predictions from

climate envelope models for threatened and endangered

vertebrates in the southeastern United States to determine

whether two different downscaling approaches (with and

without the use of a regional climate model) affect climate

envelope model predictions when all other sources of

variation are held constant. We found that prediction maps

differed spatially between downscaling approaches and

that the variation attributable to downscaling technique was

comparable to variation between maps generated using

different general circulation models (GCMs). Precipitation

variables tended to show greater discrepancies between

downscaling techniques than temperature variables, and for

one GCM, there was evidence that more poorly resolved

precipitation variables contributed relatively more to model

uncertainty than more well-resolved variables. Our work

suggests that ecological modelers requiring high-resolution

climate projections should carefully consider the type of

downscaling applied to the climate projections prior to

their use in predictive ecological modeling. The uncer-

tainty associated with alternative downscaling methods

may rival that of other, more widely appreciated sources of

variation, such as the general circulation model or emis-

sions scenario with which future climate projections are

created.
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Introduction

Given the scale of climate change and sea-level rise threats

to human and natural systems (IPCC 2007), forecasting the

timing and intensity of climate change phenomena with

high spatial precision is of paramount importance. In order

to make global, coarse-scale general circulation model

(GCM) projections useful for impact assessments, down-

scaling methods are often applied to produce future climate

projections at relatively fine spatial and temporal scales

(Wilby and Fowler 2010). Downscaling is achieved using

either statistical or dynamical methods. Statistical methods

translate GCM output to a finer spatial resolution by

establishing statistical linkages between large (GCM) scale

and local scale climate; this approach covers a wide

breadth of techniques that can vary from simple to highly

sophisticated (Fowler et al. 2007; Maraun et al. 2010).

Dynamically downscaled approaches produce finer-scale

output by embedding regional climate models (RCMs)

within GCMs, allowing for better spatial resolution of

atmospheric physics within the region (Maraun et al.

2010). Regional climate models are able to incorporate

regional-scale processes, such as convective rainfall,
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extreme weather events, surface-atmosphere interactions,

orographic precipitation, and land use (Fowler et al. 2007;

Stefanova et al. 2012). Also, they commonly produce

output at short time steps (*30 min; Tabor and Williams

2010). As such, dynamical approaches are significantly

more complex, time-consuming, and costly to implement

than statistical approaches, but in most cases are thought to

provide more realistic climate change scenarios (Fowler

et al. 2007). Because of the substantial differences between

approaches, downscaled projections can be highly variable,

and precipitation has proven to be more difficult to model

than temperature (Maraun et al. 2010).

Downscaled climate projections are an essential product

for a variety of climate change impact modelers. In ecol-

ogy, they are widely used in climate envelope models

(CEMs), a type of predictive ecological model that relates

species presences to a set of climatic variables, with the

goal of capturing meaningful relationships between the

species and its environment (Elith and Graham 2009).

These relationships are often used to create predictions of

species’ climatic space or ‘‘niche’’ in novel areas or cli-

mates, under the assumption that the species–climate

relationship remains consistent (Franklin 2009). (Note that

throughout the manuscript, we refer to the output from

CEMs as predictions, whereas outputs from climate models

are referred to as projections.) Climate envelope models

have been shown to be relatively good predictors of spe-

cies distributions in historical and contemporary climate

(Araújo et al. 2005; Mitikka et al. 2008; Rapacciuolo et al.

2012). However, their utility in predicting species’

responses to future climate regimes, which is of particular

interest for conservation management (Guisan and Thuiller

2005), is an area of concern and debate in the field (Austin

2002; Araújo and Guisan 2006; Chapman 2010; Real et al.

2010; Graham et al. 2011, Araújo and Peterson 2012,

Rapacciuolo et al. 2012). CEM predictions are dependent

on the particular climate scenarios to which they are

applied, which depend on a set of conditions that (broadly)

includes GCM, emissions scenario, geographic area, and

time period. Because CEMs require high-resolution data

sets if they are to be useful for site-specific conservation

planning under climate change (Kremen et al. 2008; Tabor

and Williams 2010), it is also important that we understand

the effect that projections from different downscaling

methods can have on CEMs (i.e., the degree of discrepancy

between CEM predictions) when all other conditions are

held constant.

To this end, we created CEM predictions for 2050 using

both dynamically and statistically downscaled data sources

for 14 species or subspecies, which have part (or all) of

their current range in the southeastern United States

(Table 1). Species selection was based on a two important

considerations: (1) We wanted to select a group of species

with varied biological traits (e.g., taxonomies, range sizes,

physiologies, habitat associations) to thoroughly analyze

the effect of climate model on CEMs, and (2) we wanted

the group to be composed of species relevant to conser-

vation planning and management in the southeastern

United States (also the spatial domain for the RCM we

used in this study). To achieve this, we selected a group of

25 terrestrial vertebrates on the U.S. federally threatened or

endangered lists occurring in the state of Florida. Among

this group of species, some are expected to be directly

impacted by climate change because of physiological tol-

erances (e.g., ectothermic reptiles living near range limits,

wading birds dependent on wet-season rainfall), while for

others the impact is less certain, potentially involving

interacting abiotic and biotic factors (e.g., see Araújo and

Luoto 2007; Cahill et al. 2012). Despite this uncertainty,

the conservation statuses of threatened and endangered

species make them high-priority candidates for the use of

climate envelope models as an initial assessment of vul-

nerability, helping aid in the development and prioritiza-

tion of policy responses to climate change (Povilitis and

Suckling 2010; Rowland et al. 2011). As such, our mod-

eling exercise provides a real-life application of climate

envelope modeling for biological planning. Finally,

because endangered, rare species are more likely to have

smaller ranges and be specialized to their habitats (Lomba

et al. 2010), they are likely to occur in areas with unique

climate conditions, and the processes creating these con-

ditions may be more strongly represented by a regional

climate model.

In the process of creating predictions from CEMs,

ecological modelers are faced with an abundance of

downscaled data choices for depicting future climate.

Statistically downscaled products (hereafter referred to as

‘‘non-RCM’’) are widely available, can be created rela-

tively quickly for multiple GCM and emissions scenarios

(including by the end user using a variety of software

packages), and are not specifically limited in geographic

scope. Dynamically downscaled products employing

RCMs are more resource-intensive and are created in order

to provide a realistic portrayal of fine-scale atmospheric

physical processes for a specific region. If regional patterns

and processes are effectively modeled, RCMs may also

lead to more realistic future climate projections. As such,

we find it useful to compare outputs between CEM pre-

dictions produced with non-RCM versus RCM climate

projections. We know that future predictions cannot be

tested in a way which would allow us to determine whether

certain climate inputs lead to better performing models

(Graham et al. 2011). Instead of a performance test, we test

for the magnitude of discrepancy between CEM predic-

tions informed by non-RCM versus RCM projections,

using two different GCMs in the A2 emissions scenario for
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a group of vertebrate species. For ecological modelers and

conservation planners with limited funds that are faced

with assessing and planning for the impacts of climate

change on biodiversity, we hope to provide specific insight

into whether the choice between downscaled climate inputs

is significant. If there is a negligible difference between

Table 1 List of species,

number of occurrences, and

variables selected for model

construction

Common name Scientific name Number of

occurrences

(occupied

cells)

Variables used in model

Mammals

Florida panther Puma concolor coryi 109 Temperature: July, October

Precipitation: February, April, May,

August, September, October

Birds

Cape Sable

seaside sparrow

Ammodramus maritimus
mirabilis

17 Temperature: November

Precipitation: February, May, June, July,

September, October

Florida

grasshopper

sparrow

Ammodramus
savannarum floridanus

25 Temperature: September

Precipitation: February, May, June,

October

Florida scrub jay Aphelocoma
coerulescens

192 Temperature: July, November

Precipitation: January, March, May, Jun,

August, October

Piping plover Charadrius melodus 782 Temperature: July, October

Precipitation: February, May, September,

October

Wood stork Mycteria americana 1,550 Temperature: July, October

Precipitation: March, May, July,

September, October

Audubon’s crested

caracara

Polyborus plancus
audubonii

159 Temperature: August, November

Precipitation: April, May, September,

December

Everglade snail

kite

Rostrhamus sociabilis
plumbeus

92 Temperature: July, September, November

Precipitation: February, April, May,

September, October

Red-cockaded

woodpecker

Picoides borealis 515 Temperature: August

Precipitation: March, May, June, July,

September

Reptiles

American

crocodile

Crocodylus acutus 112 Temperature: May, December

Precipitation: January, April, May, July,

September, October

Bluetail mole

skink

Eumeces egregius lividus 20 Temperature: October

Precipitation: January, April, May, June,

August, September, October, November

Sand skink Neoseps reynoldsi 18 Temperature: September, December

Precipitation: February, April, May, June,

August

Eastern indigo

snake

Drymarchon corais
couperi

278 Temperature: July, September

Precipitation: February, April, May,

August, September, October

Amphibians

Flatwoods

salamander

Ambystoma cingulatum 31 Temperature: October

Precipitation: February, April, May, June,

July, August, September, October,

November
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CEM predictions using the two different downscaling

techniques, there may not be strong justification for the

adoption of RCM projections for ecological modeling,

especially when non-RCM alternatives with fewer limita-

tions are abundant (e.g., Ramirez and Jarvis 2008; Tabor

and Williams 2010).

Materials and methods

Downscaled climate projections

For our ‘‘non-RCM’’ downscaled climate projections, we

acquired climate projections from the University of Wis-

consin–Madison Center for Climatic Research (Tabor and

Williams 2010). Downscaling for these data sets was per-

formed using the change-factor technique, a simple, fast

method which was implemented by calculating the origi-

nal-resolution monthly anomalies from the GCM outputs

(future projection—present simulation), downscaling these

anomalies using a spline interpolation technique, and

adding the anomalies to the Climate Research Unit (CRU;

New et al. 2002) 1961–1990 climatology (Tabor and

Williams 2010). They produced projections at the 10 arc-

minute resolution (*17 km2 at the equator) for 24 GCMs,

three IPCC emissions scenarios, and two future time peri-

ods (Tabor and Williams 2010). In our study, projections

from two GCMs for the A2 scenario are used—the

National Center for Atmospheric Research’s Community

Climate System Model, version 3.0 (hereafter CCSM3),

and the UK Met Office’s Hadley Centre for Climate Pre-

diction and Research’s HadCM3. We acquired projections

of mean monthly temperature and precipitation for these

two GCMs for the 2050 time period (representing

2041–2060).

Dynamically downscaled climate projections (RCM)

were acquired from the Center for Ocean–Atmospheric

Prediction Studies (COAPS) at Florida State University,

part of the COAPS Land–Atmosphere Regional Ensemble

Climate Change Experiment for the Southeast United

States at a 10-km resolution (http://coaps.fsu.edu/CLARReS10/

index.shtml). They employed the FSU-FCI RSM dynami-

cal model (Kanamitsu et al. 2010) to create projections for

three GCMs using the A2 emissions scenario, with three

different vegetation scenarios used to inform the models

(Stefanova et al. 2012). For our study, projections created

using the ‘‘current’’ vegetation scenario were acquired for

the CCSM3 and HadCM3 GCMs. Projections were

acquired as daily values of temperature (minimum and

maximum) and precipitation for future (2039–2070) and

historical (1968–2000) simulations. Values from 2041 to

2060 were extracted to match the non-RCM data temporal

period, and monthly averages were calculated. Mean

monthly temperature was then calculated as the average of

maximum and minimum monthly temperature. Following

the creation of these 24 monthly average temperature and

precipitation projections for the two GCMs, we needed to

ensure that they were de-biased (i.e., climate model bias

was removed). Daily precipitation values were already

bias-corrected by the COAPS group using a quantile-

matching approach (Wood et al. 2002). This process cre-

ates a cumulative distribution function (CDF) of future

daily precipitation values on a month-by-month basis,

which is then adjusted to have the same mean and variance

as an observation (twentieth century) data set. At this point,

the future data set is linearly interpolated to the CDF of the

twentieth-century data to create the final bias-corrected

values (Stefanova et al. 2012). Temperature values were

not available in a bias-corrected format at the time of

acquisition. To achieve this, we performed a delta-method

bias correction, where monthly mean temperature in the

historical simulation was subtracted from monthly mean

temperature for the future time period to produce anoma-

lies. These anomalies were then added to mean monthly

temperatures of a contemporary ‘‘consensus’’ data set,

which we created by averaging the CRU and Worldclim

(Hijmans et al. 2005) contemporary climatologies.

A geographic projection was applied to both the RCM

and non-RCM data using the WGS 1984 datum, and non-

RCM data were resampled to a *10-km resolution to

match the RCM projections. Since the RCM data were

produced for the southeastern United States only (24�N to

36�N south to north, -90�E to -76�E west to east), the

non-RCM data were clipped to match this domain. To

describe spatial variation between climate projections

made using different downscaling techniques, we calcu-

lated spatial correlations between RCM and non-RCM

projections for each climate variable (average monthly

temperature and precipitation). To calculate a spatial cor-

relation, each cell in a prediction map is paired with the

corresponding cell in another, and Pearson’s correlation is

calculated across all cells in the two maps (Syphard and

Franklin 2009).

Species models

Occurrences for the original group of 25 terrestrial verte-

brates were obtained from several online databases and the

literature sources and compiled for either the species or

subspecies taxa, depending on the designation on the U.S.

federally threatened and endangered species list for Flor-

ida. From the group of 25, we removed species occurring

only in the Florida Keys (n = 6), as this area was not

represented in the RCM projections. We also removed

species with fewer than 15 occurrences (n = 5), producing

a final group of 14 ‘‘focal’’ species across four taxa—one
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mammal, eight birds, four reptiles, and one amphibian

(Table 1). Determining an appropriate geographic back-

ground (spatial domain) from which to draw environmental

data is an active area of research in species modeling, and it

has been shown that this factor can significantly impact

model parameterization and performance (VanDerWal

et al. 2009; Elith et al. 2010; Barve et al. 2011; Acevedo

et al. 2012). In order to tailor a biologically informed

model domain for each focal species, we employed an

approach that utilized ‘‘target-group’’ species occurrences

(Phillips et al. 2009). Briefly, for each focal species, the

occurrences for at least three phylogenetically related and

ecologically similar species (the target-group) were gathered

from an online database (www.gbif.org). The 100 % mini-

mum convex polygon circumscribing these occurrences was

then generated and represented the model domain for the focal

species. As we lacked true absence data, we generated 10,000

‘‘pseudo-absences’’ within the model domain, not allowing

absences in cells where the focal species was present.

Model covariates were selected individually for each

species from an original pool of 24 monthly mean tem-

perature and precipitation variables, using the CRU con-

temporary data set. Using ecological-niche factor analysis

(ENFA) in the Biomapper program (Hirzel et al. 2002), we

analyzed the cluster diagram of variable correlations for

each species and removed all but one of the highly corre-

lated (r [ 0.85) variables from each cluster, retaining the

variable which was most associated with species’ presence

(based on its influence on marginality; see Hirzel et al.

2002). Using this method produced sets of moderately

correlated variables including 1–3 mean monthly temper-

ature and 4–9 mean monthly precipitation covariates

(Table 1). Precipitation variables were more commonly

selected due to precipitation’s inherent spatiotemporal

variability and nonlinear nature (resulting in lower corre-

lation coefficients between monthly averages). Contem-

porary climate data for model construction were drawn

from the consensus data set (described above). Values for

each of the selected variables were extracted for the focal

species’ occurrences and pseudo-absences, only allowing one

species occurrence per 10 arc-min grid cell (*17 km2).

Models were created for all species using the random

forests algorithm implemented in R 2.15.0 (R Development

Core Team 2012) using the randomForest package (Liaw

and Wiener 2002). Random forests is a machine-learning

algorithm that can handle a large number of covariates and

has been shown to be resistant to overfitting; as such, it has

also shown good performance in species distribution

models, even for species with limited observations (Cutler

et al. 2007). Assessing model performance with multiple

metrics is an important part of the modeling process (Elith

and Graham 2009). In order to test the performance of

our contemporary models, we used a cross-validation

procedure to assess the predictive performance of the

models in which we randomly sampled the training and

testing subsets (using a 75–25 % split, respectively) for

100 models. Model performance was measured during the

cross-validation using three metrics—area under the

receiver–operator curve (AUC), Cohen’s kappa (hereafter

kappa), and the true skill statistic (TSS). The AUC is a

threshold-independent metric that measures the tendency

of a randomly occupied cell to have a higher predicted

probability of suitable climate than a pseudo-absence

(Fielding and Bell 1997). Kappa is a measure of agreement

between predicted and observed presence–absence, which

corrects for agreement resulting from random chance

(Fielding and Bell 1997). It requires that a threshold value

be applied to the model’s probabilistic output. We applied

two thresholds to model output in this study. Our primary

threshold is the value which maximized kappa (hereafter

‘‘max kappa’’; Freeman and Moisen 2008). This value was

determined by initial model runs for each species where we

applied the threshold at each 0.01 unit change for five

model randomizations. After consideration of a prevalence-

based threshold as an alternate, we instead decided to use a

fixed threshold of 0.1, as prevalence was very low for most

of our study species (\0.1 for 13 out of 14). In all cases, the

fixed threshold was lower than the max kappa threshold.

The max kappa threshold was also applied for the calcu-

lation of TSS, which is a measure of [fraction correctly clas-

sified presences (sensitivity) ? fraction correctly classified

absences (specificity) - 1] (Allouche et al. 2006). One model

was created using 100 % of data (‘‘baseline’’) to provide the

spatial prediction for the contemporary model, the classifi-

cation for the future models, and a measure of permutation

importance for each variable in model construction.

Testing the effects of different downscaling approaches

on species models

The baseline random forest models for each species were

applied to the climate projections to produce four future

CEM predictions (non-RCM CCSM3, non-RCM HadCM3,

RCM CCSM3, and RCM HadCM3). To test for discrep-

ancies between prediction maps attributable to different

downscaling techniques, we calculated spatial correlations

between the RCM and non-RCM prediction maps for each

species, with separate analyses for each GCM. Because

abundant evidence suggests that using different GCMs

introduces variation into predictions from ecological

models (Real et al. 2010), we compared discrepancies in

CEM predictions attributable to the different downscaling

techniques to discrepancies associated with different

GCMs by calculating spatial correlations between CCSM3

and HadCM3 prediction maps for each species, with sep-

arate analyses for the two downscaling approaches.

Climate downscaling effects on predictive ecological models
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We also wanted to describe how CEM prediction maps

using RCM versus non-RCM data varied when a threshold

was applied to the probabilistic value, a common practice

in species’ distribution modeling that produces a binary

‘‘suitable/unsuitable’’ climate map (Guisan and Thuiller

2005) We did this by calculating a ‘‘spatial coincidence’’

metric for each species’ future spatial prediction maps for

the two GCMs. It is a measurement of the area (A) where

non-RCM and RCM predictions coincide (Aoverlap), where

the overlap area is divided by the total area predicted as

suitable in either of the maps [Aoverlap/([Anon-RCM ?

ARCM] - Aoverlap)]. This provided us with a test of the

spatial agreement of RCM and non-RCM prediction maps

which was independent of the spatial correlation metric.

For 10 species, we applied the threshold at max kappa. For

the other six (all with very limited ranges in the study area),

the max kappa threshold was higher than any pixel’s pre-

dicted value for at least one of the prediction maps; for

these species, the fixed threshold of 0.1 was used.

Finally, we hypothesized that differences between RCM

and non-RCM prediction maps (the effect of alternative

downscaling techniques on species models) may be par-

ticularly great when the models are strongly influenced by

monthly climate variables that are poorly resolved (i.e.,

described very differently using the two downscaling

approaches). Although it would be ideal to test this idea on

a species-by-species basis, some climate variables were

either not included in any of the species’ models or only

included in a few models. Thus, the differential represen-

tation of variables in the species’ models precludes a robust

assessment of variable contribution to model predictions.

Instead, we ask a more general question: Do more poorly

resolved climate variables contribute relatively more to

model predictions? If so, this would suggest that prediction

maps may be particularly influenced by the most poorly

resolved climate variables. We identified the most poorly

resolved climate variables using the spatial correlation

between RCM and non-RCM climate projections as

described above. We estimated the importance of all cli-

mate variables in each species’ random forest model by

calculating the relative mean decrease in accuracy attrib-

uted to that variable (Cutler et al. 2007) in the baseline

model run and averaging this metric of variable importance

across all species. If more poorly resolved climate variables

contribute relatively more to model predictions, there

should be a negative relationship between spatial correla-

tion and mean variable importance. We tested for that

relationship using linear regression, with a separate model

for each GCM.

Results

Spatial correlations between projected average monthly

temperatures for RCM versus non-RCM variables

(mean = 0.974, range = 0.896–0.998) were higher and less

variable than those for average monthly precipitation projec-

tions (mean = 0.740, range = 0.160–0.920; Table 2). Cor-

relations between projections for July (Fig. 1) and October

precipitation from the CCSM3 GCM were particularly low

(r = 0.160 and r = 0.254, respectively); correlations for all

other CCSM3 variables (temperature and precipitation) were

greater than 0.500. For the HadCM3 model, only correlation

for May precipitation (r = 0.461) was below 0.500.

Results from the cross-validation for contemporary

CEMs showed good performance of all models according

Table 2 Spatial correlation

between climate projections

made using two different

downscaling techniques (with

and without the use of a regional

climate model) for the HadCM3

and CCSM3 general circulation

models

Month Spatial correlation (RCM vs. non-RCM)

HadCM3 CCSM3

Temperature Precipitation Temperature Precipitation

January 0.996 0.821 0.997 0.799

February 0.998 0.903 0.996 0.877

March 0.996 0.837 0.995 0.920

April 0.991 0.793 0.992 0.898

May 0.987 0.461 0.987 0.727

June 0.905 0.862 0.934 0.687

July 0.897 0.655 0.896 0.160

August 0.943 0.856 0.949 0.651

September 0.973 0.749 0.978 0.795

October 0.987 0.682 0.993 0.254

November 0.993 0.855 0.996 0.764

December 0.998 0.909 0.998 0.852

Mean ± 1 SD 0.972 ± 0.037 0.782 ± 0.129 0.976 ± 0.033 0.699 ± 0.245
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to the AUC statistic (mean = 0.988), indicating that

models were able to discriminate among occupied sites and

pseudo-absences (Manel et al. 2001). Classification per-

formance metrics using the max kappa threshold were more

variable (Table 3), with several models showing decreased

performance due to low sensitivity (ability to classify test

presences). In general, however, the good performance results

using random forests were broadly congruent with previous

models run for a similar set of species using different climate

data and variables (Watling et al. 2012).

Spatial correlations (r) between CEM prediction maps

using the two downscaling techniques (holding GCM

constant) were moderate (Table 4; mean = 0.632, range =

0.074–0.865 for the HadCM3 GCM and mean = 0.530,

range = 0.347–0.844 for the CCSM3 GCM; see also Fig. 2

for the predictions using HadCM3). By way of comparison,

spatial correlations between maps created using the dif-

ferent downscaling techniques were very similar to those

between GCM projections, where downscaling method was

held constant (Table 4; mean = 0.667, range = 0.384–

0.923 for the non-RCM data; and mean = 0.519, range =

-0.051–0.786 for the RCM data).

Mean spatial coincidence between RCM and non-RCM

predictions for the 28 combinations (14 species 9 2

GCMs) was low (mean = 0.365) and varied slightly by

GCM (CCSM3 mean = 0.333; HadCM3 mean = 0.397).

As our objective is not to test the variability between GCM

projections, the spatial coincidence metric was only cal-

culated for the comparison of RCM versus non-RCM data

sets and is presented as the species’ mean value for the two

GCMs (Table 4).

Mean variable importance scores ranged from 0.000 to

0.143. For the CCSM3 GCM, there was no evidence to

suggest that poorly resolved climate variables were par-

ticularly important in species models (F1,10 = 2.14,

p = 0.17; and F1,10 = 0.36, p = 0.56 for temperature and

precipitation variables, respectively). For the HadCM3

GCM, there was no association between spatial correla-

tions and variable importance for temperature (F1,10 =

1.36, p = 0.27), but the relationship was significant for

precipitation (F1,10 = 8.05, p = 0.02), indicating a ten-

dency for more poorly resolved precipitation variables to

contribute relatively greatly to model predictions.

Discussion

In this study, we showed that for a set of 14 threatened and

endangered vertebrates, climate envelope model predic-

tions created with dynamically downscaled data (RCM)

were only moderately spatially correlated (mean r =

0.581) with predictions created with non-dynamically

downscaled (non-RCM) data and that the magnitude of

difference was virtually the same as that between predic-

tions created using different GCMs (mean r = 0.593).

There were considerable differences between RCM and

non-RCM projections for several climate variables, and

there was evidence that the most discrepant precipitation

variables contributed disproportionately to CEM predic-

tions. Our results show that just as discrepancies can arise

between large-scale GCMs (and in turn affect CEM pre-

dictions; Real et al. 2010), equally important differences

Fig. 1 Mean total July precipitation for 2041–2060 according to RCM and non-RCM projections for the NCAR CCSM3 GCM, illustrating the

significant discrepancies that can arise with different downscaling approaches
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between climate projections can arise through the down-

scaling process of a single GCM. When implemented in

CEMs, climate variables from these projections produced

moderately to drastically different predictions, depending on

the species and variables used. These results highlight the need

for caution when interpreting CEM predictive maps for future

climate regimes, particularly binary suitable/unsuitable

climate maps (often termed ‘‘presence/absence’’), a point

reinforced by low spatial coincidence scores between CEM

predictions in this study (mean = 0.365).

Table 3 Cross-validation results for species models based on 100 random partitions of the species’ occurrences and pseudo-absences (mean

value ± one SD)

Common name AUC Cohen’s kappa TSS Sensitivity Specificity

Florida panther 0.994 ± 0.009 0.918 ± 0.032 0.958 ± 0.038 0.959 ± 0.038 0.999 ± 0.001

Cape Sable seaside sparrow 1.00 ± 0.000 0.786 ± 0.173 0.732 ± 0.225 0.733 ± 0.225 1.00 ± 0.000

Florida grasshopper sparrow 0.996 ± 0.015 0.707 ± 0.144 0.676 ± 0.192 0.677 ± 0.192 0.999 ± 0.001

Florida scrub jay 0.999 ± 0.000 0.902 ± 0.028 0.966 ± 0.029 0.969 ± 0.029 0.997 ± 0.001

Piping plover 0.962 ± 0.006 0.655 ± 0.027 0.63 ± 0.034 0.651 ± 0.035 0.979 ± 0.004

Wood stork 0.964 ± 0.005 0.751 ± 0.017 0.749 ± 0.022 0.783 ± 0.022 0.967 ± 0.003

Audubon’s crested caracara 0.999 ± 0.002 0.914 ± 0.03 0.972 ± 0.031 0.975 ± 0.031 0.998 ± 0.001

Everglade snail kite 0.999 ± 0.001 0.836 ± 0.046 0.909 ± 0.061 0.912 ± 0.061 0.998 ± 0.001

Red-cockaded woodpecker 0.984 ± 0.005 0.718 ± 0.027 0.782 ± 0.038 0.802 ± 0.039 0.98 ± 0.003

American crocodile 0.960 ± 0.017 0.366 ± 0.062 0.424 ± 0.092 0.434 ± 0.092 0.99 ± 0.002

Bluetail mole skink 0.998 ± 0.01 0.747 ± 0.153 0.718 ± 0.209 0.718 ± 0.209 1.00 ± 0.000

Sand skink 0.993 ± 0.025 0.472 ± 0.153 0.653 ± 0.253 0.655 ± 0.253 0.998 ± 0.001

Eastern indigo snake 0.997 ± 0.001 0.861 ± 0.023 0.95 ± 0.022 0.957 ± 0.022 0.993 ± 0.002

Flatwoods salamander 0.993 ± 0.01 0.358 ± 0.134 0.327 ± 0.139 0.329 ± 0.14 0.998 ± 0.001

Mean ± 1SD 0.988 ± 0.014 0.714 ± 0.183 0.746 ± 0.193 0.754 ± 0.192 0.993 ± 0.010

Threshold-dependent metrics (kappa, TSS, sensitivity, and specificity) are calculated using the max kappa threshold

Table 4 Spatial correlation

between GCMs (varying

downscaling method) and

downscaling method (varying

GCMs), and spatial coincidence

(calculated between

downscaling methods; mean for

the two GCMs) for all 14 study

species climate envelope model

predictions for 2041–2060

For the spatial coincidence

metric, italics indicate a species

for which the 0.1 threshold was

used

Common name Spatial correlation

(downscaling

procedure)

Spatial correlation

(GCMs)

Spatial coincidence

(downscaling procedure)

CCSM3 HadCM3 RCM non-RCM (mean of both GCMs)

Florida panther 0.512 0.797 0.468 0.660 0.364

Cape Sable seaside sparrow 0.489 0.764 0.556 0.821 0.287

Florida grasshopper sparrow 0.351 0.486 0.243 0.563 0.218

Florida scrub jay 0.844 0.865 0.786 0.923 0.698

Piping plover 0.456 0.665 0.521 0.794 0.394

Wood stork 0.594 0.702 0.650 0.759 0.862

Audubon’s crested caracara 0.442 0.697 0.422 0.683 0.341

Everglade snail kite 0.562 0.700 0.665 0.568 0.147

Red-cockaded woodpecker 0.347 0.074 -0.051 0.384 0.644

American crocodile 0.439 0.705 0.746 0.662 0.062

Bluetail mole skink 0.664 0.630 0.595 0.623 0.208

Sand skink 0.541 0.565 0.443 0.632 0.086

Eastern indigo snake 0.647 0.693 0.685 0.713 0.584

Flatwoods salamander 0.524 0.502 0.538 0.559 0.212

Mean 0.530 0.632 0.519 0.667 0.365

Fig. 2 Climate envelope model prediction maps for 14 terrestrial

vertebrate species in the southeastern United States using the

HadCM3 GCM and A2 emissions scenario. All maps represent

predictions of climate suitability based on average conditions during

the 20-year period, 2041–2060. Darker shades indicate higher climate

suitability

c
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Precipitation projections showed much greater dissimi-

larity than temperature between RCM and non-RCM data,

and we showed that this uncertainty can be transferred to

CEM predictions. For the HadCM3 GCM, spatial predic-

tions from CEMs constructed using different downscaling

techniques were more discrepant when poorly resolved

precipitation variables contributed greatly to CEM pre-

dictions. Precipitation is very sensitive to climate model

parameterization and is highly spatially variable, two issues

that can contribute to large discrepancies between different

climate model (both GCM and RCM) projections (Maraun

et al. 2010). While RCMs are initially driven by GCM

projections, they have been shown to contribute added

value in predicting precipitation (Maraun et al. 2010).

However, RCMs generally show greater skill in the pre-

diction of winter precipitation, and for moderate (as

opposed to very heavy, particularly convective) precipita-

tion (Maraun et al. 2010). Indeed, summer precipitation is

difficult to model in the southeastern United States (and

particularly peninsular Florida, where it is the wet season)

due to the regional climatological factors, including the

significant contribution of convective rainfall, sea breeze,

thunderstorms, and squall lines (Stefanova et al. 2012).

Regional climate models, which are equipped to deal with

these regional-scale phenomena, may be expected to dif-

ferentiate most greatly from the non-RCM-informed pre-

dictions for high-precipitation months, or dry-to-wet

season transition months (as was the case here).

While this study provided a direct comparison of CEM

predictions created with RCM versus non-RCM climate

projections, there are certain limitations that need to be

considered. The non-RCM (statistical) data used here were

derived using a simple (change-factor) technique;

undoubtedly, alternative statistically downscaled projec-

tions using more complex regional interactions may pro-

duce different results (e.g., Hellström et al. 2001). Our

variable selection methodology, which favored the selec-

tion of precipitation variables relative to temperature, may

have acted to heighten the dissimilarity between CEM

predictions. Also, due to data limitations, we only com-

pared CEMs created with projections from two GCMs

within one emissions scenario, which limited our ability to

provide a more robust assessment of the effect of down-

scaling on CEM predictions. Finally, the geographic

domain of our predictions was limited by the CLAR-

EnCE10 RCM domain (Fig. 1). While this area is probably

adequate for modeling changes in suitable climate for most

of the study species due to their currently limited ranges,

several (including the red-cockaded woodpecker, wood

stork, piping plover, and American crocodile) have ranges

that extend well beyond the southeastern United States, and

the CEMs were built using data from outside this range

(i.e., some occurrences fell outside of the southeastern

United States). While this does not produce inherently

‘‘incorrect’’ prediction maps, it does place a significant

predefined constraint on their interpretation and usefulness

for conservation planning.

In summary, CEM predictions created with dynamically

versus non-dynamically downscaled data were only mod-

erately correlated, and correlation varied by GCM. A

similar moderate correlation was seen between GCMs,

which also varied by downscaling approach. This suggests

that, similar to the selection of GCM and emissions sce-

nario (Real et al. 2010), choices regarding downscaling

approach of the climate data for predictive ecological

modeling are not insignificant. While choosing an RCM

projection may seem preferable for species modeling, there

are many considerations that should be made prior to their

use. Due to the computationally intensive nature and

expensive implementation of RCMs, fewer [GCM x

emissions scenario] combinations are likely to be dynam-

ically downscaled (Fowler et al. 2007), reducing the ability

to bracket predictions made with RCMs with consensus or

‘‘ensemble’’ (multiple GCM x emission scenario) approa-

ches. Likewise, RCMs introduce their own biases and can

produce variable climate projections within one GCM

(Fowler et al. 2007), but alternative RCMs are less likely to

be available at fine spatial resolutions for most areas. In

addition, RCMs by definition are sub-global and do not

represent climate for very large geographic areas, reducing

their utility for wide-ranging species (as was exemplified

with several species in this study). Our results also suggest

that precipitation variables, particularly from the wet sea-

son, have greater uncertainties which can sometimes con-

tribute to more discrepant CEM predictions. When these

variables are significant determinants in a region’s

hydrology, and in turn, the ability of a species to occupy

the area, they cannot be ignored during variable selection.

Despite the limitations described above, RCM-informed

projections may be preferable for species dependent on

specific hydrological regimes, due to the RCM’s ability to

provide a more accurate representation of the spatiotem-

poral structure of fine-scale phenomena affecting precipi-

tation regimes (Stefanova et al. 2012). Clearly, trade-offs

between uncertainty, ensemble approaches, spatial scale,

and geographic domain need to be weighed prior to the

selection of the climate projection product(s) that is most

appropriate for each species. As the impact of climate

change will likely produce species-specific effects (Real

et al. 2010), selection of climate projections based on

justifiable species-specific considerations will likely pro-

duce more informative models.
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Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP,

Peterson AT, Soberón J, Villalobos F (2011) The crucial role of

the accessible area in ecological niche modeling and species

distribution modeling. Ecol Model 222:1810–1819

Cahill AE, Aiello-Lammens ME, Fisher-Reid MC, Hua X, Karanew-

sky CJ, Ryu HY, Sbeglia GC, Spagnolo F, Waldron JB, Warsi O,

Wiens JJ (2012) How does climate change cause extinction?

Proc R Soc B, published online 17 Oct 2012. doi:10.1098/rspb.

2012.1890

Chapman DS (2010) Weak climatic associations among British plant

distributions. Glob Ecol Biogeogr 19:831–841

Cutler DR, Edwards TC Jr, Beard KH, Cutler A, Hess KT, Gibson J,

Lawler JJ (2007) Random forests for classification in ecology.

Ecology 88:2783–2792

Elith J, Graham CH (2009) Do they? How do they? WHY do they

differ? On finding reasons for differing performances of species

distribution models. Ecography 32:66–77

Elith J, Kearney M, Phillips S (2010) The art of modelling range-

shifting species. Methods Ecol Evol 1:330–340

Fielding AH, Bell JF (1997) A review of methods for the assessment

of prediction errors in conservation presence/absence models.

Environ Conserv 24:38–49

Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change

modelling to impacts studies: recent advances in downscaling

techniques for hydrological modelling. Int J Climatol

27:1547–1578

Franklin J (2009) Mapping species distributions: spatial inference and

prediction. Cambridge University Press, New York

Freeman EA, Moisen GG (2008) A comparison of the performance of

threshold criteria for binary classification in terms of predicted

prevalence and kappa. Ecol Model 217:48–58

Graham CH, Loiselle BA, Velásquez-Tibatá J, Cuesta FC (2011)
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